Схема зарядки аккумулятора мобильного телефона с пояснением

Попробуйте наш инструмент устранения неполадок





Мобильный зарядное устройство Схема - это устройство, которое может автоматически заряжать аккумулятор мобильного телефона при низком уровне заряда. В настоящее время мобильные телефоны стали неотъемлемой частью жизни каждого человека и, следовательно, требуют частой зарядки аккумулятора из-за более длительного использования.

Зарядные устройства бывают простыми, непрерывными, с таймером, интеллектуальными универсальными зарядными устройствами-анализаторами, быстрыми, импульсными, индуктивными, USB-зарядными устройствами, зарядными устройствами на солнечных батареях и зарядными устройствами с подвижным приводом. Эти зарядные устройства также различаются в зависимости от приложений, таких как зарядное устройство для мобильных телефонов, зарядное устройство для транспортных средств, зарядные устройства для аккумуляторов электромобилей и зарядные станции.




Способы зарядки делятся на две категории: метод быстрой зарядки и метод медленной зарядки. Быстрая зарядка - это система, которая используется для зарядки аккумулятора примерно за два часа или меньше, а медленная зарядка - это система, используемая для зарядки аккумулятора в течение ночи. Медленная зарядка выгодна, поскольку не требует какой-либо схемы обнаружения заряда. Кроме того, это дешево. Единственным недостатком этой системы зарядки является то, что для зарядки аккумулятора требуется максимальное время.

Автоотключение зарядного устройства

Этот проект направлен на автоматическое отключение аккумулятора от сети, когда аккумулятор полностью заряжен. Эта система также может использоваться для зарядки частично разряженных элементов. Схема проста и состоит из преобразователя переменного тока в постоянный, драйверов реле и зарядных станций.



Схема зарядного устройства для мобильных аккумуляторов

Схема зарядного устройства для мобильных аккумуляторов

Описание схемы

В секции преобразователя переменного тока в постоянный трансформатор понижает доступный источник переменного тока до 9 В переменного тока при 75 мА, который выпрямляется с помощью двухполупериодного выпрямителя, а затем фильтруется конденсатором. Зарядное напряжение 12 В постоянного тока обеспечивается регулятором, и при нажатии переключателя S1 зарядное устройство начинает работать и включается питание. ВЕЛ светится, указывая на то, что зарядное устройство включено.

Секция драйвера реле состоит из транзисторов PNP для включения электромагнитного реле. Это реле подключено к коллектору первого транзистора и управляется вторым PNP-транзистором, который, в свою очередь, управляется PNP-транзистором.


В секции зарядки микросхема регулятора смещена и дает около 7,35 В. Для регулировки напряжения смещения используется предустановка VR1. Диод D6 подключен между выходом микросхемы, и для зарядки аккумулятора используется ограничивающее выходное напряжение аккумулятора до 6,7 В.

Когда переключатель нажат, он фиксирует реле и начинает заряжать аккумулятор. Когда напряжение на ячейку превышает 1,3 В, падение напряжения начинает уменьшаться на R4. Когда напряжение падает ниже 650 мВ, транзистор T3 отключается и переходит на транзистор T2 и, в свою очередь, отключает транзистор T3. В результате реле RL1 обесточивается, чтобы отключить зарядное устройство, и красный светодиод LED1 гаснет.

Зарядное напряжение в зависимости от NiCd-элемента может быть определено с помощью технических характеристик, предоставленных производителем. Зарядное напряжение установлено на 7,35 В для четырех ячеек по 1,5 В. В настоящее время на рынке доступны элементы емкостью 700 мАч, которые можно заряжать от 70 мА в течение десяти часов. Напряжение холостого хода около 1,3В.

Точка напряжения отключения определяется путем полной зарядки четырех элементов (при 70 мА в течение четырнадцати часов) и добавления падения напряжения на диоде (до 0,65 В) после измерения напряжения и смещения LM317 соответственно.

В дополнение к указанной выше простой схеме, реализация этой схемы в реальном времени на основе проекты солнечной энергетики обсуждаются ниже.

Контроллер заряда солнечной энергии

Основная цель этого контроллер заряда солнечной энергии Проект заключается в зарядке аккумулятора с помощью солнечных батарей. В этом проекте рассматривается механизм контроль заряда это также обеспечит защиту от перезаряда, глубокого разряда и пониженного напряжения аккумулятора. В этой системе с помощью фотоэлектрических элементов солнечная энергия преобразуется в электрическую.

Контроллер заряда солнечной энергии

Контроллер заряда солнечной энергии

Этот проект включает в себя такие аппаратные компоненты, как солнечная панель, операционные усилители, MOSFET, диоды, светодиоды, потенциометр и аккумулятор. Солнечные панели используются для преобразования энергии солнечного света в электрическую. Эта энергия накапливается в батарее в дневное время и используется в ночное время. Набор OP-AMPS используется в качестве компараторов для непрерывного контроля напряжения панели и тока в проводе.

Светодиоды используются в качестве индикаторов и горят зеленым цветом, показывая, что аккумулятор полностью заряжен. Точно так же, если аккумулятор недостаточно заряжен или перегружен, они светятся красным светом. Контроллер заряда использует MOSFET - силовой полупроводниковый переключатель для отключения нагрузки, когда батарея разряжена или находится в состоянии перегрузки. Транзистор используется для передачи солнечной энергии в фиктивную нагрузку, когда батарея полностью заряжена, и защищает батарею от чрезмерного заряда.

Фотогальванический контроллер заряда MPPT на базе микроконтроллера

Этот проект направлен на разработку контроллера заряда с отслеживанием точки максимальной мощности на основе микроконтроллера.

Фотогальванический контроллер заряда MPPT

Фотогальванический контроллер заряда MPPT

Основными компонентами, используемыми в этом проекте, являются солнечная панель, аккумулятор, инвертор, беспроводной трансивер, ЖК-дисплей, датчик тока и Датчик температуры . Электроэнергия от солнечных панелей подается на контроллер заряда, который затем выдается в батарею и используется для хранения энергии. Выход батареи подключен к инвертору, который предоставляет пользователю выходы для доступа к накопленной энергии.

Солнечная панель, аккумулятор и инвертор покупаются отдельно, а контроллер заряда MPPT спроектирован и построен солнечными рыцарями. ЖК-экран предназначен для отображения заряда аккумулятора и других предупреждающих сообщений. Выходное напряжение изменяется с помощью широтно-импульсной модуляции от микроконтроллера к драйверам MOSFET. Способ отслеживания точки максимальной мощности с использованием реализации алгоритма MPPT в контроллере гарантирует, что аккумулятор заряжается на максимальной мощности от солнечной панели.

Вот так можно сделать зарядное устройство для мобильных телефонов. Два упомянутых здесь примера могут облегчить вам процесс. Более того, если у вас есть сомнения и вам нужна помощь в реализации проектов в реальном времени и схемы промышленных зарядных устройств , вы можете оставить комментарий в разделе комментариев ниже.

Фото Кредиты

  • Схема зарядного устройства для мобильных аккумуляторов от ggpht
  • Фотогальванический контроллер заряда MPPT от eecs