Принцип индукционного нагрева и его применение

Попробуйте наш инструмент устранения неполадок





Индукция принцип нагрева используется в производственных процессах с 1920-х годов. Как сказано, необходимость - мать изобретений, во время Второй мировой войны необходимость в быстром процессе упрочнения частей металл двигатель, быстро разработала технологию индукционного нагрева. Сегодня мы видим применение этой технологии в наших повседневных потребностях. В последнее время потребность в улучшенном контроле качества и безопасных производственных технологиях снова привлекла внимание к этой технологии. Благодаря современным передовым технологиям внедряются новые и надежные методы реализации индукционного нагрева.

Что такое индукционный нагрев?

В Принцип работы Процесс индукционного нагрева представляет собой комбинированный рецепт электромагнитной индукции и джоулева нагрева. Процесс индукционного нагрева - это бесконтактный процесс нагрева электропроводящего металла путем создания вихревых токов внутри металла с использованием принципа электромагнитной индукции. Поскольку генерируемый вихревой ток течет против удельного сопротивления металла, по принципу джоулева нагрева в металле генерируется тепло.




Индукционный нагрев

Индукционный нагрев

Как работает индукционный нагрев?

Знание закона Фарадея очень полезно для понимания работы индукционного нагрева. Согласно закону электромагнитной индукции Фарадея изменение электрического поля в дирижер создает вокруг себя переменное магнитное поле, сила которого зависит от величины приложенного электрического поля. Этот принцип работает и наоборот, когда в проводнике изменяется магнитное поле.



Таким образом, вышеуказанный принцип используется в процессе индукционного нагрева. Здесь твердое состояние Частота RF Электропитание подается на катушку индуктивности, а нагреваемый материал помещается внутри катушки. Когда Переменный ток проходит через катушку, вокруг нее создается переменное магнитное поле в соответствии с законом Фарадея. Когда материал, помещенный внутри индуктора, попадает в диапазон этого переменного магнитного поля, в материале генерируется вихревой ток.

Теперь соблюдается принцип джоулева нагрева. В соответствии с этим, когда через материал проходит ток, в нем выделяется тепло. Таким образом, когда в материале создается ток из-за индуцированного магнитного поля, протекающий ток выделяет тепло изнутри материала. Это объясняет процесс бесконтактного индукционного нагрева.

Индуктивный нагрев металла

Индуктивный нагрев металла

Схема индукционного нагрева

Установка, используемая для процесса индукционного нагрева, состоит из высокочастотного источника питания, обеспечивающего переменный ток в цепи. Медная катушка используется в качестве индуктора, и к ней подается ток. Нагреваемый материал помещается внутрь медного змеевика.


Типовая установка индукционного нагрева

Типовая установка индукционного нагрева

Изменяя силу подаваемого тока, мы можем контролировать температуру нагрева. Поскольку вихревой ток, возникающий внутри материала, течет противоположно удельному электрическому сопротивлению материала, в этом процессе наблюдается точный и локализованный нагрев.

Помимо вихревого тока, из-за гистерезиса в магнитных частях также выделяется тепло. Электрическое сопротивление, создаваемое магнитным материалом по отношению к изменяющемуся магнитному полю внутри индуктора, вызывает внутреннее трение. Это внутреннее трение создает тепло.

Поскольку процесс индукционного нагрева представляет собой процесс бесконтактного нагрева, нагреваемый материал может находиться вдали от источника питания или погружен в жидкость, или в любую газовую среду, или в вакуум. Для этого типа нагрева не требуются дымовые газы.

Факторы, которые необходимо учитывать при проектировании системы индукционного нагрева

Есть некоторые факторы это следует учитывать при проектировании системы индукционного нагрева для любого типа применения.

  • Обычно процесс индукционного нагрева используется для металлов и проводящих материалов. Непроводящий материал можно нагревать напрямую.
  • При нанесении на магнитные материалы тепло генерируется как вихревыми токами, так и эффектом гистерезиса магнитных материалов.
  • Маленькие и тонкие материалы нагреваются быстрее, чем большие и толстые.
  • Чем выше частота переменного тока, тем меньше глубина проплавления.
  • Материалы с более высоким сопротивлением быстро нагреваются.
  • Индуктор, в который должен быть помещен нагревательный материал, должен позволять легко вставлять и удалять материал.
  • При расчете мощности источника питания необходимо учитывать удельную теплоемкость нагреваемого материала, массу материала и требуемое повышение температуры.
  • Потери тепла из-за теплопроводности, конвекции и излучения также следует принимать во внимание при выборе мощности источника питания.

Формула индукционного нагрева

Глубина проникновения вихревого тока в материал определяется частотой индуктивного тока. Для токоведущих слоев эффективная глубина может быть рассчитана как

D = 5000 √ρ / мкФ

Здесь d означает глубину (см), относительная магнитная проницаемость материала обозначается как µ, ρ удельное сопротивление материала в Ом-см, f указывает частоту переменного поля в Гц.

Конструкция змеевика индукционного нагрева

Катушка, используемая в качестве индуктора, к которой подается питание, бывает разных форм. Индуцированный ток в материале пропорционален количеству витков в катушке. Таким образом, для эффективности и действенности индукционного нагрева важна конструкция катушки.

Обычно индукционные катушки представляют собой медные проводники с водяным охлаждением. В зависимости от наших приложений используются катушки различной формы. Чаще всего используется многооборотная спиральная катушка. Для этой катушки ширина диаграммы нагрева определяется количеством витков в катушке. Однооборотные катушки полезны в тех случаях, когда требуется нагрев узкой полосы заготовки или кончика материала.

Многопозиционный спиральный змеевик используется для нагрева более чем одной заготовки. Блинный змеевик применяется, когда требуется нагреть только одну сторону материала. Внутренний змеевик используется для нагрева внутренних отверстий.

Применение индукционного нагрева

  • Целенаправленный нагрев для поверхностного нагрева, плавления, пайки возможен с помощью процесса индукционного нагрева.
  • Помимо металлов, индукционным нагревом возможен нагрев жидких проводов и газовых проводов.
  • Для нагрева кремния в полупроводниковой промышленности используется принцип индукционного нагрева.
  • Этот процесс используется в индукционных печах для нагрева металла до температуры плавления.
  • Поскольку это бесконтактный процесс нагрева, вакуумные печи используют этот процесс для производства специальной стали и сплавов, которые окисляются при нагревании в присутствии кислорода.
  • Процесс индукционного нагрева используется для сварки металлов и иногда пластиков, когда они легированы ферромагнитной керамикой.
  • Индукционные плиты, используемые на кухне, работают по принципу индукционного нагрева.
  • Для пайки карбида к валу используется процесс индукционного нагрева.
  • Для герметизации крышек бутылок и фармацевтических препаратов с защитой от несанкционированного доступа используется процесс индукционного нагрева.
  • В машине для моделирования впрыска пластмасс используется индукционный нагрев для повышения энергоэффективности впрыска.

Для обрабатывающих производств, индукционный нагрев обеспечивает мощный набор согласованности, скорости и контроля. Это аккуратный, быстрый и экологически чистый процесс нагрева. Потери тепла, наблюдаемые при индукционном нагреве, могут быть решены с помощью закона Ленца. Этот закон показал способ продуктивного использования тепловых потерь, возникающих в процессе индукционного нагрева. Какое из применений индукционного нагрева вас поразило?