4 объяснения простых схем бестрансформаторного источника питания

Попробуйте наш инструмент устранения неполадок





В этом посте мы обсудим 4 простых в сборке, компактных простых бестрансформаторных схемах питания. Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного напряжения сети переменного тока. Все представленные здесь дизайны работают независимо без трансформатора или без трансформатора .

Концепция бестрансформаторного источника питания

Как следует из названия, схема бестрансформаторного источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или индуктора.



Он работает за счет использования высоковольтного конденсатора для снижения сетевого переменного тока до необходимого более низкого уровня, который может быть подходящим для подключенной электронной схемы или нагрузки.

Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение напряжения было намного выше, чем пиковое напряжение сети переменного тока, чтобы гарантировать безопасную работу конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:



Конденсатор 105/400 В 1 мкФ Конденсатор 400 В для бестрансформаторного питания

Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.

Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от емкости конденсатора, реактивное сопротивление конденсатора вступает в действие и не позволяет сетевому переменному току превышать заданный уровень, определяемый номиналом конденсатора.

Однако, хотя ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, это около 310 В , и это может насторожить любого нового любителя.

Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать его с помощью стабилитрона на выходе мостового выпрямителя.

В мощность стабилитрона должны быть правильно выбраны в соответствии с допустимым уровнем тока конденсатора.

ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения.

Преимущества использования схемы бестрансформаторного питания

Идея недорогая, но очень эффективная для приложений, для работы которых требуется мало энергии.

Использование трансформатора в Источники питания постоянного тока вероятно, довольно распространенное явление, и мы много слышали об этом.

Однако одним из недостатков использования трансформатора является то, что вы не можете сделать его компактным.

Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает работу действительно громоздкой и беспорядочной.

Описанная здесь бестрансформаторная схема питания очень эффективно заменяет обычный трансформатор для приложений, требующих тока ниже 100 мА.

Здесь высокое напряжение металлизированный конденсатор используется на входе для необходимого понижения напряжения сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.

Схема, показанная на схеме выше, представляет собой классический дизайн, может использоваться как Источник питания постоянного тока 12 В источник для большинства электронных схем.

Однако, обсудив преимущества вышеупомянутой конструкции, стоит сосредоточиться на нескольких серьезных недостатках, которые эта концепция может включать.

Недостатки бестрансформаторной схемы питания

Во-первых, схема не может выдавать большие токи на выходе, но это не проблема для большинства приложений.

Еще один недостаток, который, безусловно, требует некоторого рассмотрения, заключается в том, что эта концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не будет иметь значения для устройств, в которых все находится в непроводящем корпусе.

Поэтому начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: приведенная выше схема позволяет скачки напряжения проникнуть через него, что может привести к серьезным повреждениям цепи питания и самой цепи питания.

Однако в предложенной простой схеме бестрансформаторного источника питания этот недостаток разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.

Этот конденсатор заземляет мгновенные скачки высокого напряжения, тем самым эффективно защищая связанную с ним электронику.

Как работает схема

Работу этого бестрансформаторного источника питания можно понять по следующим пунктам:

  1. Когда вход сети переменного тока включен, конденсаторные блоки С1 ввод сетевого тока и ограничивает его до более низкого уровня, определяемого значением реактивного сопротивления C1. Здесь можно приблизительно принять значение около 50 мА.
  2. Тем не менее, напряжение не ограничено, и поэтому все 220 В или что-либо еще на входе может достигать следующей ступени мостового выпрямителя.
  3. В мостовой выпрямитель выпрямляет эти 220 В C до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
  4. Этот 310 В постоянного тока мгновенно понижается до низкого уровня постоянного тока следующим каскадом стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
  5. C2 наконец фильтрует 12 В постоянного тока с рябью в относительно чистый 12 В постоянного тока.

1) Базовая бестрансформаторная конструкция

Простая схема бестрансформаторного источника питания

Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:

  1. Конденсатор C1 становится наиболее важной частью схемы, поскольку именно он снижает высокий ток в сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать выходную нагрузку током около 50 мА. Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы хотите узнать расчеты более точно, вы можете обратитесь к этой статье .
  2. Резистор R1 используется для обеспечения разрядного тракта для высоковольтного конденсатора С1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 может сохранять в себе сетевой потенциал 220 В, когда он отсоединен от сети, и может вызвать удар высоким напряжением у любого, кто дотронется до контактов вилки. R1 быстро разряжает C1, предотвращая любую подобную аварию.
  3. Диоды D1 - D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока конденсатора C1 в слабый постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока примерно. Итак, у нас на выходе моста 310 В, 50 мА.
  4. Однако напряжение 310 В постоянного тока может быть слишком высоким для любого устройства с низким напряжением, кроме реле. Следовательно, должным образом оцененный стабилитрон используется для шунтирования 310 В постоянного тока на желаемое меньшее значение, такое как 12 В, 5 В, 24 В и т. д., в зависимости от характеристик нагрузки.
  5. Резистор R2 используется как токоограничивающий резистор . Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть, когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд. Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока попасть в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом могло бы быть использование NTC вместо R2.
  6. C2 - это конденсатор фильтра , который сглаживает пульсации 100 Гц от выпрямленного моста до более чистого постоянного тока. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.

Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я также включил место для MOV на печатной плате со стороны входа сети.

Схема печатной платы бестрансформаторного источника питания

Пример схемы для светодиодного декоративного освещения

Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как небольшие светодиодные лампы или светодиодные гирлянды.

Идея была предложена г-ном Джайешем:

Технические требования

Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну, так что расположение лампочки составляет 4 дюйма. в финальной веревке. итак всего 390 - 408 светодиодных лампочек в финальной тросе.
Поэтому, пожалуйста, предложите мне лучшую схему драйвера для работы
1) одна струна 65-68 струн.
или же
2) полная веревка из 6 струн вместе.
У нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно, примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, так что расположение лампы происходит длина последней веревки должна составлять 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
Поэтому, пожалуйста, предложите мне лучшую схему драйвера для работы
1) одна струна 65-68 струн.
или же
2) полная веревка из 3-х струн вместе.
Пожалуйста, предложите лучшую надежную схему с устройством защиты от перенапряжения и посоветуйте, какие дополнительные вещи необходимо подключить для защиты схем.
и, пожалуйста, обратите внимание, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.

Схемотехника

Схема драйвера, показанная ниже, подходит для вождения любая светодиодная лампа менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В 5 мм светодиоды:

емкостный бестрансформаторный источник питания для светодиодных лент

Здесь входной конденсатор 0,33 мкФ / 400 В определяет величину тока, подаваемого на цепочку светодиодов. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.

Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.

Следовательно, для двух параллельно включенных струн требуемое значение будет 0,68 мкФ / 400 В, а для 3 струн вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.

Важный :Хотя я не показывал ограничительный резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности. Его можно было вставить где угодно последовательно с отдельными струнами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ КАСАНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТЕВОЙ ПИТАНИИ ........

2) Переход на стабилизированный по напряжению бестрансформаторный источник питания

Теперь давайте посмотрим, как обычный емкостный источник питания может быть преобразован в стабилизированный без скачков напряжения или в бестрансформаторный источник питания переменного напряжения, применимый практически ко всем стандартным электронным нагрузкам и схемам. Идея была предложена г-ном Чанданом Мэйти.

Технические характеристики

Если вы помните, я уже общался с вами раньше, оставляя комментарии в вашем блоге.

Бестрансформаторные схемы действительно хороши, и я протестировал пару из них и использовал светодиоды мощностью 20 Вт и 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, поэтому мне нужен двойной источник питания.

Примерная спецификация:

Номинальный ток 300 мА AP1 = 3,3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода)
Я подумал использовать вашу вторую цепь, как упоминалось https://homemade-circuits.com/2012/08/high-current-transformerless-power.html

Но я не могу заморозить способ получить 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3,3-5 В.

Буду рад, если вы любезно поможете.

Спасибо,

Дизайн

Функционирование различных компонентов, используемых на различных этапах показанной выше схемы управления напряжением, можно понять со следующих точек зрения:

Напряжение сети выпрямляется четырьмя диодами 1N4007 и фильтруется конденсатором 10 мкФ / 400 В.

Выходной сигнал на 10 мкФ / 400 В теперь достигает около 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети.

Сеть делителей напряжения, сконфигурированная в основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или по мере необходимости на выходе источника питания.

Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности.

Если требуется 12 В, потенциометр 10 кОм может быть настроен для достижения этого через эмиттер / землю TIP122.

Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы поддерживать ее в выключенном состоянии и защищать от первоначального скачка напряжения.

Катушка индуктивности дополнительно гарантирует, что в течение периода включения катушка обеспечивает высокое сопротивление и предотвращает попадание любого пускового тока внутрь цепи, предотвращая возможное повреждение цепи.

Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать стабилизатор напряжения, такой как показанная 7805 IC.

Принципиальная электрическая схема

схема бестрансформаторного питания со стабилизированным напряжением

Использование MOSFET Control

Вышеупомянутая схема с эмиттерным повторителем может быть дополнительно улучшена путем применения Источник питания ведомого источника MOSFET , вместе с дополнительным каскадом регулирования тока на транзисторе BC547.

Полную принципиальную схему можно увидеть ниже:

Бестрансформаторная схема питания с емкостным и MOSFET-управлением

Видео доказательство защиты от скачков напряжения

3) Схема бестрансформаторного питания с нулевым переходом

Третий интерес объясняет важность обнаружения перехода через ноль в емкостных бестрансформаторных источниках питания, чтобы сделать его полностью безопасным от бросков бросков тока при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом.

Технические характеристики

Я с большим интересом читал статьи о безтрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема - это возможный пусковой ток в цепи при включении, и это вызвано тем, что включение не всегда происходит, когда цикл проходит при нулевом напряжении (переход через ноль).

Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через ноль, почему бы не использовать компонент перехода через ноль для управления им, например, оптотриак с пересечением нуля.

Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться симистором, который включается при переходе через нуль.

Если это применимо, это также решит проблемы с высокими требованиями к току, поскольку Optotriac, в свою очередь, может без каких-либо трудностей управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током.

Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту.

С уважением,
Фрэнсис

Дизайн

Как правильно указано в приведенном выше предложении, вход переменного тока без контроль пересечения нуля может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания.

бестрансформаторная схема питания с управляемым переходом через нуль

Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложной задачей и может быть легко реализовано с использованием этих устройств.

О оптронах MOCxxxx

Драйверы симистора серии MOC имеют форму оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль.

Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может использоваться для предлагаемого приложения для контроля перенапряжения в емкостных источниках питания.

Обнаружение и выполнение перехода через нуль обрабатываются внутри этих блоков оптических драйверов, и нужно только настроить силовой симистор с ним для наблюдения за предполагаемым управляемым срабатыванием при переходе через ноль интегральной схемы симистора.

Прежде чем исследовать схему бестрансформаторного питания симистора без перенапряжения с использованием концепции управления переходом через нуль, давайте сначала кратко разберемся, что такое переход через нуль, и связанные с ним особенности.

Что такое переход через нуль в сети переменного тока

Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые растут и падают с изменением полярности от нуля до максимума и наоборот в заданном масштабе. Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковое значение +310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл.

Когда сетевое напряжение близко к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если во время этого происходит включение емкостного источника питания В этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока. Результатом может быть то, что мы обычно наблюдаем в таких блоках питания ... то есть мгновенное сгорание подключенной нагрузки.

Вышеупомянутые последствия обычно можно увидеть только в емкостных бестрансформаторных источниках питания, потому что конденсаторы имеют характеристики короткого замыкания в течение доли секунды при воздействии напряжения питания, после чего они заряжаются и настраиваются на свой правильный заданный выходной уровень.

Возвращаясь к проблеме пересечения нуля в сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и любое устройство включено. в этот момент можно ожидать, что он будет полностью безопасным и свободным от скачков напряжения.

Следовательно, если емкостной источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выходной сигнал источника питания будет безопасным и не будет иметь импульсного тока.

Как это устроено

Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что всякий раз, когда включается питание, он срабатывает и инициирует подключенный симистор только во время первого перехода через ноль фазы переменного тока, а затем сохраняет переменный ток включенным. обычно до тех пор, пока питание не будет отключено и снова не включено.

Обращаясь к рисунку, мы можем видеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур.

Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника, через конфигурацию мостового выпрямителя для достижения чистого постоянного тока для предполагаемой нагрузки, которая могла бы быть светодиодной. .

Как контролируется импульсный ток

При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети.

Напряжение питания, получаемое с выхода конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической ИС. Этот вход контролируется и обрабатывается внутри в соответствии с откликом светодиодного ИК-света ... и как только обнаруживается, что поданный цикл переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшееся время до выключения и повторного включения блока.

При описанной выше настройке при каждом включении питания оптоизолятор симистора MOC обеспечивает включение симистора только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, обеспечивает полную безопасность нагрузки и свободен от опасного всплеска спешки.

Улучшение вышеуказанного дизайна

Здесь обсуждается комплексная схема емкостного источника питания с детектором перехода через ноль, ограничителем перенапряжения и регулятором напряжения, идея была представлена ​​г-ном Чами.

Разработка улучшенной схемы емкостного источника питания с обнаружением перехода через нуль

Привет, Свагатам.

Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все свои сомнения.
(Я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)

1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока.

2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может, его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381.

3-R6 (200R 5W), я знаю, что этот резистор довольно маленький, и его
неисправность, я вообще хотел поставить резистор на 1к, а вот с 200R 5Вт
резистор он бы работал?

4-Некоторые резисторы были изменены в соответствии с вашими рекомендациями, чтобы сделать его способным к напряжению 110 В. Может быть, 10 кОм нужно меньше?

Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно).

Спасибо, что нашли время и просмотрели мою полную неисправностей схему.

Хорошего дня.

Chamy

Оценка дизайна

Привет, Чами,

мне кажется, что ваша схема работает нормально. Вот ответы на ваши вопросы:

1) да BT136 следует заменить на симистор более высокого номинала.
2) TIP31 следует заменить транзистором Дарлингтона, например, TIP142 и т. Д., Иначе он может работать неправильно.
3) при использовании Дарлингтона базовый резистор может быть высокого номинала, может быть, резистор 1 кОм / 2 Вт будет вполне нормальным.
Однако дизайн сам по себе выглядит излишеством, гораздо более простую версию можно увидеть ниже. https://homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
С Уважением

Swagatam

Ссылка:

Цепь нулевого пересечения

4) Импульсный бестрансформаторный источник питания с использованием IC 555

Это 4-е простое, но умное решение реализовано здесь с использованием IC 555 в ее моностабильном режиме для управления резким скачком напряжения в безтрансформаторном источнике питания с помощью концепции схемы переключения с переходом через нуль, при которой входная мощность от сети может поступать в цепь только во время переход через ноль сигнала переменного тока, что исключает возможность скачков напряжения. Идею предложил один из заядлых читателей этого блога.

Технические характеристики

Будет ли работать бестрансформаторная схема с нулевым переходом, чтобы предотвратить начальный бросок тока, не позволяя включаться до точки 0 в цикле 60/50 Гц?

Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную функцию.

Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, что конденсатор рассчитан на 5 ампер или 125 мкФ. конденсатор нагреется и взорвется ???

Как читать характеристики конденсаторов, чтобы определить, сколько энергии они могут рассеять.

Вышеупомянутый запрос побудил меня искать связанную конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения.

Что такое переключение с нулевым пересечением:

Прежде чем исследовать предлагаемую бестрансформаторную схему без импульсных помех, важно сначала изучить эту концепцию.

Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока. Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала.

После этого положительного цикла форма волны опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке.

Вышеупомянутая операция происходит примерно от 50 до 60 раз в секунду в зависимости от характеристик электросети.
Поскольку именно эта форма волны входит в цепь, любая точка формы сигнала, кроме нуля, представляет потенциальную опасность выброса при включении из-за наличия в форме сигнала высокого тока.

Однако вышеуказанной ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после чего экспоненциальный рост не представляет никакой угрозы для нагрузки.

Именно это мы и попытались реализовать в предложенной схеме.

Схема работы

Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсацию 100 Гц по линии.
Вышеупомянутая частота 100 Гц снижается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. На этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1.

Вышеупомянутый потенциал также подается на базу Q1 через резистор 100 кОм.

IC 555 сконфигурирован как моностабильный MV, что означает, что на его выходе будет высокий уровень каждый раз, когда его контакт №2 заземлен.

В течение периодов, когда напряжение сети переменного тока превышает (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока достигает нулевой отметки, то есть ниже (+) 0,6 В, Q1 включает заземляющий контакт # 2 микросхемы и рендеринг положительного выхода вывода №3 микросхемы.

Выход IC включает SCR и нагрузку и сохраняет его включенным до истечения времени MMV, чтобы начать новый цикл.

Время включения моностабильного можно установить, изменяя предустановку 1M.

Большее время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот.

Таким образом, условия включения этой бестрансформаторной схемы питания на основе IC 555 ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или схемы.

Принципиальная электрическая схема

Бестрансформаторный источник питания с использованием IC 555

Для приложения светодиодного драйвера

Если вы ищете бестрансформаторный источник питания для коммерческого использования светодиодных драйверов, то, вероятно, вы можете попробовать концепции, объясненные здесь .




Предыдущая статья: Схема дистанционного управления с использованием FM-радио Next: Как сделать мощные автомобильные фары с помощью светодиодов