Что такое мостовой выпрямитель: принципиальная схема и его работа

Попробуйте наш инструмент устранения неполадок





Схема выпрямителя используется для преобразования переменного (переменного тока) в постоянный (постоянный ток). Выпрямители в основном подразделяются на три типа: полуволновые, двухполупериодные и мостовые выпрямители. Основная функция всех этих выпрямителей такая же, как преобразование тока, но они неэффективно преобразовывают ток из переменного в постоянный. Двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразуют. Схема мостового выпрямителя - это обычная часть электронных источников питания. Много электронные схемы требуется выпрямленный постоянный ток источник питания для питания различных электронные базовые компоненты от доступной сети переменного тока. Мы можем найти этот выпрямитель в большом количестве электронных Устройства переменного тока, такие как бытовая техника , контроллеры двигателей, процесс модуляции, сварочные работы и т. д. В этой статье обсуждается обзор мостового выпрямителя и его работы.

Что такое мостовой выпрямитель?

Мостовой выпрямитель - это преобразователь переменного тока в постоянный (DC), который выпрямляет входной переменный ток сети в выход постоянного тока. Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств. Они могут быть сконструированы с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.




Мостовой выпрямитель

Мостовой выпрямитель

В зависимости от требований к току нагрузки выбирается подходящий мостовой выпрямитель. При выборе источника питания выпрямителя для соответствующей области применения электронной схемы учитываются номинальные и технические характеристики компонентов, напряжение пробоя, диапазоны температур, номинальный переходный ток, номинальный прямой ток, требования к установке и другие соображения.



Строительство

Конструкция мостового выпрямителя показана ниже. Эта схема может быть сконструирована с четырьмя диодами, а именно D1, D2, D3 и D4, а также с нагрузочным резистором (RL). Подключение этих диодов может быть выполнено по схеме замкнутого контура для эффективного преобразования переменного (переменного тока) в постоянный (постоянный ток). Основным преимуществом этой конструкции является отсутствие эксклюзивного трансформатора с центральным отводом. Таким образом, размер, как и стоимость, уменьшится.

Как только входной сигнал подается на два терминала, такие как A и B, сигнал постоянного тока o / p может быть получен через RL. Здесь нагрузочный резистор подключен между двумя клеммами, такими как C и D. Расположение двух диодов может быть выполнено таким образом, что электричество будет проводиться двумя диодами в течение каждого полупериода. Пары диодов, такие как D1 и D3, будут проводить электрический ток в течение положительного полупериода. Точно так же диоды D2 и D4 будут проводить электрический ток в течение отрицательного полупериода.

Схема мостового выпрямителя

Основным преимуществом мостового выпрямителя является то, что он выдает почти вдвое большее выходное напряжение, чем в случае двухполупериодного выпрямителя с трансформатором с центральным отводом. Но этой схеме не нужен трансформатор с центральным отводом, поэтому она напоминает недорогой выпрямитель.


Схема мостового выпрямителя состоит из различных ступеней устройств, таких как трансформатор, диодный мост, фильтрация и регуляторы. Как правило, все эти комбинации блоков называют регулируемый источник питания постоянного тока который питает различные электронные устройства.

Первый каскад схемы - это трансформатор понижающего типа, который изменяет амплитуду входного напряжения. Большинство из электронные проекты используйте трансформатор 230/12 В для понижения напряжения сети переменного тока с 230 В до 12 В.

Схема мостового выпрямителя

Схема мостового выпрямителя

Следующим этапом является диодно-мостовой выпрямитель, в котором используются четыре или более диодов в зависимости от типа мостового выпрямителя. При выборе конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя необходимо учитывать некоторые особенности устройства, такие как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Оно отвечает за создание однонаправленного или постоянного тока на нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.

Поскольку выход после диодных мостовых выпрямителей имеет пульсирующий характер, и для его создания как чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторы прикреплены поперек нагрузки, как вы можете видеть на рисунке ниже, при котором выполняется сглаживание волны. Этот номинал конденсатора также зависит от выходного напряжения.

Последней ступенью этого регулируемого источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне. Предположим, что микроконтроллер работает при 5 В постоянного тока, но выход после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня - независимо от изменений напряжения на входе - необходим регулятор напряжения.

Мостовой выпрямитель

Как мы обсуждали выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключается к нагрузке. Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть приведенную ниже схему в демонстрационных целях.

Во время положительного полупериода входного сигнала переменного тока диоды D1 и D2 смещены в прямом направлении, а D3 и D4 - в обратном направлении. Когда напряжение больше, чем пороговый уровень диодов D1 и D2 начинают проводить - ток нагрузки начинает течь через них, как показано на пути красной линии на диаграмме ниже.

Схема работы

Схема работы

Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 - в обратном направлении. Ток нагрузки начинает течь через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

Мы можем заметить, что в обоих случаях направление тока нагрузки одинаково, то есть вверх-вниз, как показано на рисунке - так однонаправлено, что означает постоянный ток. Таким образом, с помощью мостового выпрямителя входной переменный ток преобразуется в постоянный. Выход на нагрузке с этим мостовым выпрямителем имеет пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр, такой как конденсатор. Такая же операция применима для разных мостовых выпрямителей, но в случае с управляемыми выпрямителями срабатывание тиристоров необходимо подвести ток к нагрузке.

Типы мостовых выпрямителей

Выпрямители Bride подразделяются на несколько типов в зависимости от следующих факторов: тип источника питания, возможности управления, конфигурация схемы подключения и т. Д. Мостовые выпрямители в основном делятся на однофазные и трехфазные. Оба эти типа далее подразделяются на неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые из этих типов выпрямителей описаны ниже.

Однофазные и трехфазные выпрямители

Эти выпрямители решают от типа источника питания, то есть однофазного или трехфазного. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов , как показано на рисунке. Это могут быть неуправляемые или управляемые выпрямители, в зависимости от компонентов схемы, таких как диоды, тиристоры и так далее.

Однофазные и трехфазные выпрямители

Однофазные и трехфазные выпрямители

Неуправляемые мостовые выпрямители

Этот мостовой выпрямитель использует диоды для выпрямления входа, как показано на рисунке. Поскольку диод - это однонаправленное устройство, которое позволяет току течь только в одном направлении. Такая конфигурация диодов в выпрямителе не позволяет изменять мощность в зависимости от требований нагрузки. Таким образом, этот тип выпрямителя используется в постоянные или фиксированные источники питания .

Неуправляемые мостовые выпрямители

Неуправляемые мостовые выпрямители

Управляемый мостовой выпрямитель

В этом типе выпрямителя Преобразователь переменного / постоянного тока или выпрямитель - вместо неуправляемых диодов используются управляемые твердотельные устройства, такие как SCR, MOSFET, IGBT и т. Д., Для изменения выходной мощности при разных напряжениях. Посредством срабатывания этих устройств в различные моменты времени выходная мощность на нагрузке изменяется соответствующим образом.

Управляемый мостовой выпрямитель

Управляемый мостовой выпрямитель

Мостовой выпрямитель IC

Мостовой выпрямитель, такой как конфигурация выводов IC RB-156, обсуждается ниже.

Контакт-1 (фаза / линия): Это входной контакт переменного тока, где можно подключить фазный провод от источника переменного тока к этому фазному контакту.

Контакт-2 (нейтральный): Это входной контакт переменного тока, на котором можно подключить нейтральный провод от источника переменного тока к этому нейтральному контакту.

Контакт-3 (положительный): Это выходной контакт постоянного тока, где положительное напряжение постоянного тока выпрямителя получается с этого положительного контакта.

Контакт 4 (отрицательный / земля): Это выходной контакт постоянного тока, на котором напряжение заземления выпрямителя получается с этого отрицательного контакта.

Характеристики

Подкатегории этого мостового выпрямителя RB-15 варьируются от RB15 до RB158. Из этих выпрямителей наиболее часто используется RB156. Технические характеристики мостового выпрямителя РБ-156 включают следующее.

  • Постоянный ток O / p составляет 1,5 А
  • Максимальное пиковое обратное напряжение 800 В
  • Выходное напряжение: (√2 × VRMS) - 2 Вольт
  • Максимальное входное напряжение 560 В
  • Падение напряжения для каждого моста составляет 1 В при 1 А.
  • Импульсный ток 50А

RB-156 - наиболее часто используемый компактный недорогой однофазный мостовой выпрямитель. Эта ИС имеет самое высокое напряжение переменного тока i / p, например 560 В, поэтому ее можно использовать для однофазной сети питания во всех странах. Максимальный постоянный ток этого выпрямителя - 1,5 А. Эта микросхема - лучший выбор в проектах для преобразования переменного тока в постоянный и обеспечивает до 1,5 А.

Характеристики мостового выпрямителя

К характеристикам мостового выпрямителя относятся следующие:

  • Фактор пульсации
  • Пиковое обратное напряжение (PIV)
  • Эффективность

Фактор пульсации

Измерение плавности выходного сигнала постоянного тока с использованием коэффициента называется коэффициентом пульсации. Здесь плавный сигнал постоянного тока может рассматриваться как сигнал постоянного тока o / p, включающий небольшое количество пульсаций, тогда как сигнал постоянного тока с высокой пульсацией может рассматриваться как сигнал постоянного тока o / p, включающий высокие пульсации. Математически его можно определить как долю пульсационного напряжения и чистого постоянного напряжения.

Для мостового выпрямителя коэффициент пульсации может быть задан как

Γ = √ (Vrms2 / VDC) −1

Значение коэффициента пульсаций мостового выпрямителя составляет 0,48

PIV (пиковое обратное напряжение)

Пиковое обратное напряжение или PIV может быть определено как максимальное значение напряжения, которое исходит от диода, когда он подключен в состоянии обратного смещения в течение отрицательного полупериода. Мостовая схема включает четыре диода типа D1, D2, D3 и D4.

В положительном полупериоде два диода, такие как D1 и D3, находятся в проводящем положении, тогда как оба диода D2 и D4 находятся в непроводящем положении. Аналогично, в отрицательном полупериоде диоды, подобные D2 и D4, находятся в проводящем положении, тогда как диоды, подобные D1 и D3, находятся в непроводящем положении.

Эффективность

Эффективность выпрямителя в основном определяет, насколько правильно выпрямитель преобразует переменный ток (переменный ток) в постоянный (постоянный ток). Эффективность выпрямителя можно определить как соотношение мощности постоянного тока и мощности переменного тока. Максимальный КПД мостового выпрямителя составляет 81,2%.

η = DC o / p Мощность / AC i / p Мощность

Форма волны мостового выпрямителя

Из принципиальной схемы мостового выпрямителя можно сделать вывод, что ток через резистор нагрузки одинаков на протяжении положительного и отрицательного полупериодов. Полярность сигнала постоянного тока o / p может быть либо полностью положительной, либо отрицательной. В данном случае это абсолютно положительно. Когда направление диода меняется на противоположное, можно получить полное отрицательное напряжение постоянного тока.

Следовательно, этот выпрямитель позволяет протекать току как в положительном, так и в отрицательном циклах переменного тока i / p. Формы выходных сигналов мостового выпрямителя показаны ниже.

Почему он называется мостовым выпрямителем?

По сравнению с другими выпрямителями, это наиболее эффективный тип выпрямительной схемы. Это тип двухполупериодного выпрямителя, как следует из названия, в этом выпрямителе используются четыре диода, которые соединены в виде моста. Поэтому такой выпрямитель называется мостовым выпрямителем.

Почему мы используем 4 диода в мостовом выпрямителе?

В мостовом выпрямителе четыре диода используются для создания схемы, которая обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным отводом. Этот выпрямитель в основном используется для обеспечения двухполупериодного выпрямления в большинстве приложений.

Расположение четырех диодов может быть выполнено в замкнутом контуре для эффективного преобразования переменного тока в постоянный. Основным преимуществом такой схемы является отсутствие трансформатора с центральным отводом, что снижает размер и стоимость.

Преимущества

К преимуществам мостового выпрямителя можно отнести следующее.

  • Эффективность выпрямления двухполупериодного выпрямителя вдвое выше, чем у однополупериодного выпрямителя.
  • Более высокое выходное напряжение, более высокая выходная мощность и более высокий коэффициент использования трансформатора в случае двухполупериодного выпрямителя.
  • Пульсации напряжения низкие и имеют более высокую частоту, в случае двухполупериодного выпрямителя требуется простая схема фильтрации.
  • Во вторичной обмотке трансформатора не требуется центральный ответвитель, поэтому в случае мостового выпрямителя требуемый трансформатор проще. Если повышение или понижение напряжения не требуется, можно даже отказаться от трансформатора.
  • Для заданной выходной мощности в случае мостового выпрямителя можно использовать силовой трансформатор меньшего размера, поскольку ток как в первичной, так и во вторичной обмотках питающего трансформатора течет в течение всего цикла переменного тока.
  • Эффективность выпрямления вдвое больше, чем у однополупериодного выпрямителя.
  • Он использует простые схемы фильтров для высокой частоты и низкого напряжения пульсаций.
  • TUF выше по сравнению с выпрямителем с центральным отводом
  • Трансформатор центрального ответвления не нужен

Недостатки

К недостаткам мостового выпрямителя можно отнести следующее.

  • Требуется четыре диода.
  • Использование двух дополнительных диодов вызывает дополнительное падение напряжения, тем самым уменьшая выходное напряжение.
  • Для этого выпрямителя требуется четыре диода, поэтому стоимость выпрямителя будет высокой.
  • Схема не подходит, если необходимо выпрямить небольшое напряжение, потому что соединение двух диодов может быть выполнено последовательно и обеспечивает двойное падение напряжения из-за их внутреннего сопротивления.
  • Эти схемы очень сложные
  • По сравнению с выпрямителем с центральным отводом мостовой выпрямитель имеет большие потери мощности.

Приложение - Преобразование переменного тока в постоянный с помощью мостового выпрямителя

Регулируемый источник питания постоянного тока часто требуется для многих электронных приложений. Один из самых надежных и удобных способов - преобразовать имеющийся источник питания переменного тока в источник постоянного тока. Это преобразование сигнала переменного тока в сигнал постоянного тока выполняется с помощью выпрямителя, который представляет собой систему диодов. Это может быть однополупериодный выпрямитель, который выпрямляет только половину сигнала переменного тока, или двухполупериодный выпрямитель, который выпрямляет оба периода сигнала переменного тока. Двухполупериодный выпрямитель может быть выпрямителем с центральным отводом, состоящим из двух диодов, или мостовым выпрямителем, состоящим из 4 диодов.

Здесь демонстрируется мостовой выпрямитель. Устройство состоит из 4 диодов, расположенных так, что аноды двух соседних диодов соединены для обеспечения положительного питания на выходе, а катоды двух других соседних диодов соединены для подачи отрицательного питания на выход. Анод и катод двух других соседних диодов подключены к плюсу источника переменного тока, тогда как анод и катод двух других соседних диодов подключены к минусу источника переменного тока. Таким образом, 4 диода расположены в виде моста, так что в каждом полупериоде два чередующихся диода проводят ток, создавая постоянное напряжение с отталкиванием.

Данная схема состоит из мостового выпрямителя, чей нерегулируемый выход постоянного тока подается на конденсатор электролита через токоограничивающий резистор. Напряжение на конденсаторе контролируется с помощью вольтметра и продолжает расти по мере заряда конденсатора, пока не будет достигнут предел напряжения. Когда к конденсатору подключена нагрузка, конденсатор разряжается, чтобы обеспечить необходимый входной ток для нагрузки. В этом случае в качестве нагрузки подключается лампа.

Регулируемый источник питания постоянного тока

Регулируемый источник питания постоянного тока состоит из следующих компонентов:

  • Понижающий трансформатор для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения.
  • Мостовой выпрямитель для преобразования переменного тока в пульсирующий постоянный ток.
  • Схема фильтра, состоящая из конденсатора для удаления пульсаций переменного тока.
  • Стабилизатор IC 7805 для получения стабилизированного постоянного напряжения 5 В.

Понижающий трансформатор преобразует сетевое напряжение 230 В переменного тока в 12 В переменного тока. Это 12 В переменного тока подается на схему мостового выпрямителя, так что чередующиеся диоды проводят каждый полупериод, создавая пульсирующее напряжение постоянного тока, состоящее из пульсаций переменного тока. Конденсатор, подключенный к выходу, позволяет сигналу переменного тока проходить через него и блокирует сигнал постоянного тока, тем самым действуя как фильтр верхних частот. Таким образом, выходной сигнал через конденсатор представляет собой нерегулируемый фильтрованный сигнал постоянного тока. Этот выход можно использовать для управления электрические компоненты например, реле, двигатели и т. д. Регулятор IC 7805 подключен к выходу фильтра. Он дает постоянный регулируемый выход 5 В, который можно использовать для подачи входных сигналов для многих электронных схем и устройств, таких как транзисторы, микроконтроллеры и т. Д. Здесь 5 В используется для смещения светодиода через резистор.

Это все о теория мостового выпрямителя его виды, схема и принцип работы. Мы надеемся, что эта полезная статья по этой теме поможет в построении проекты студентов по электронике или электрике а также при наблюдении за различными электронными устройствами или приборами. Благодарим вас за внимание и внимание к этой статье. Поэтому, пожалуйста, напишите нам для выбора требуемых характеристик компонентов в этом мостовом выпрямителе для вашего приложения и для получения любых других технических рекомендаций.

Теперь мы надеемся, что вы получили представление о концепции мостового выпрямителя и его применениях, если какие-либо дополнительные вопросы по этой теме или концепции электрических и электронных проектов оставят комментарии в разделе ниже.

Фото: